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OPT IMUM QUANT IZAT I O N S  

Abstract 

//J@ 
The transformation required by the quantization process of a continuous 

variable results in a n  error that may be considered as noise. We define 

Optimum Quantization as the type that minimizes the mean square (or peak) 

error for a constant number of quanta. This optimization is possible when 

the probability density function of the continuous variable is known. 

Relations involving the quantization intervals as a function of the 

probability density function and the number of quanta are developed for 

three cases, i.e., when the mean of a quantum represents the values of the 

variable in that interval after quantization, when the midpoint assumes 

the above representation and when the probability density function is 

approximattd by a piecewise uniform probability density function with 

discontinuities at end points of the intervals. In the last case, the mean 

and the midpoint f o r  each interval coincide. 

Interesting results are obtained for the special case when the 

continuous variable has a uniform probability density function; optimization 

of this case results in uniform quantization which incidentally produces 

the maximum mean square quantization error. 



’ I .  I N T R O D U C T I O N  

The majority of telemetry systems is concerned with the measurement and 

transmission of information about the value of a finite range continuous 

variable. 

A typical telemetry system such as the one shown in Figure 1 cxposes 

some of the most important transformations that the variable is usually 

subjected to, from the point of measurement (or source) to the ze,cording 

station (or receiver). 

At the receiver, the detected value of the variable may be i%,error 

due to errors, or equivalently noise, introduced by the tran,sformat,iqn. and 

the medium. ‘ . . *  

There are always errors in the received value of the variab,le whe?ever 

this variable goes through an irreversible transformation.;: FOE example, 

referring to the building blocks of Figure 1, sampling is not an:irreversible . ,  

transformation if the sampling rate is more than or equal to 1/2W where W 

is the highest signal frequency, or in some cases the bandwjdt.h. However, 

. .  

quantization and addition of noise are irreversible transforniations 

resulting in errors. 

Although the statistics of the errors due to individua1,J~sturbances 

can be easily found, in case of more than one disturbanct>, tiiese disturbances 

must l w  properly combined. The two most serious di t ~li-I~ances re  1 erred to 

here arc’ the error due to quantization and the chnnnt)t noise. 

-- 
:‘;An irrcve.rsible transformation is defined here as a transformation T which, 
if applied to x, will result in xT and whose inverse cannot rest3re x by 
the operation ( x T ) T - ~ ,  o r  i f  T lias no inverse. 
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To provide t h e  n e c e s s a r j  Y-eckground f o r  t h i s  d i scyss ion ,  t h e  second 

p a r t  of t h i s  paper i s  devoted t o  t he  d e f i n i t i o n s  and t h e  types of 

q u a n t i z a t i o n  errors and t h e i r  srrong correspondence t o  t h e  choice of t h e  

poin t  t h a t  r e p r e s e n t s  t h e  i n f i r r i t e  number of p o i n t s  of a quantum. 

p a r t  ends with a proof tha t  i . 1 1  uniforr.: qu2nt iza t ion  t h e  e r r o r  i s  independert  

of t h e  p r o b a b i l i t y  d e n s i t y  filii:-LInn of : . 

This  

P a r t  IT1 i s  devoted to a’t introduct-llJlT of  inforixxtion tmeasure, and 

t h e  information l o s s  due t o  quant iza t ion  3 r d  gaussian n o i s e .  This  p a r t  

i s  concluded with a comparison of t h e  eri-i?‘c3 due t o  channel no ise  and those 

due t o  q u a n t i z a t i o n  p i t h  a b r i c f  d e s c r i p t i o n  of t h e r r  depend~nce  on n ,  

t h e  number of levels.  In a d d i t i o n , t h e  t w c  disturbaxices a r e  combined f o r  an  

optimum choice of n, t h e  ninnbrr of  quant izat  inn l e v e l s .  

P a r t  IV u t i l i z e s  t h e  p r n b a h i l i t y  densi !.y func t ion  of a random v a r i a b l e  

x t o  optimize t h e  q u a n t i z a t i o n  process  by 1 4  .n;mi7ing t h e  quant iza t ion  e r ro r ,  

e under th ree  d i f f e r e n t  condi t ions .  
q’ 

F i n a l l y ,  P a r t  V i s  devoted t o  discussicin and some r e s u l t s  cb ta ined  by 

us ing  t y p i c a l  p r o b a b i l i t y  d e n 5 i t y  functions 2 s  cxamples. 

11. DEFINITIONS OF QUANTIZAl - __ I c )N  - ___ ERRORS _c_. 

Quantizat ion i s  a many-tn--<mp t r a n s f o r x t i o n  of a s e t  of values  of a 

continuous v a r i a b l e  i n t o  cuie  \I : 1 ~ i c ’  v i .  

numb(-r of elements,  r+prescnt i i ig  the  v a l u e s  o !  a ront inuous var iqble  i n  a 

c e r t a i n  rqnge r 

T h i s  1 ranr,format j )! naps an  i n f i n i t e  

to one o l t  iiir l i t  t h a t  co r re sp .  dr t o  t h e  range ri. i’ 

t’ifore proceeding a n y  f u r t h e r ,  we must i 4 ,  ~ ~ t - i f y  thFs element t h a t  

corresponds t o  ri i n  such a manner s o  as t o  enahle  ourse lves  t o  d e f i n e  a 

measurc on the quant izat  o r 1  e r r o r .  
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Since ri, being an abstract set of points, cannot be represented by 

one value, two alternate values that could be used in lieu of ri are the 

mean of x in the interval ri and the midpoint of this interval. 

The mean value of x in the interval (xi-l, xi) is expressed by: 

I xixp (x)dx 
I xip (x)dx 
Xi-1 - mi - 

xi- 1 

In this case, the average error is: 

< e> = J(x-mi) p(x)dx = 0 

ri 

The midpoint of the interval (xi-l, xi) is defined as: 

In this case, the mean error is not generally equal to zero. However, the 

peak error becomes +qi/2 where qi is the ith quantization interval; 

qi = xi - xi-1 

The significance of these two types of characterizations of ri will 

become evident by referring to Figure 2a where the random variable, x, has 

been uniformly quantized into six intervals xo, xl, ----- , x6. If the range 
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of x ,  r i ,  i s  i d e n t i f i e d  with the  bottom of each i n t e r v a l  xi-l ,  the  e r r o r  

i s  p l o t t e d  i n  Figure 2b and v a r i e s  from zero  t o  q i .  

Let u s  now draw a s e t  of l i n e s  of value vi on the  e r r o r  curve (Figure 2b) 

and c a l l  them t h e  zero  e r r o r  l i n e s  f o r  each i n t e r v a l .  This  procedure i s  

equiva len t  t o  i d e n t i f y i n g  the  ranges r i  by x i - 1  + v i ;  t he  e r r o r  i n  t h i s  

case w i l l  vary from -vi t o  qi - vi. 

The peak e r r o r  i s  e i t h e r  \-vi\ o r  q i  - vi whichever i s  l a r g e r .  By 

l e t t i n g  

I-vd = qi - vi o r  vi  = qi/2 

we minimize the peak e r r o r .  

minimize the peak e r r o r .  

Thus by s e t t i n g  vi equal  t o  t h e  midpoint we 

Simi la r ly ,  t he  mean square e r r o r  i s  

2 - 
<e2) = ( x - v i ) 2  = 2 - 2 x v i  + v i  

To f i n d  the  value of vi f o r  minimum square e r r o r ,  we d i f f e r e n t i a t e  t h e  above 

express ion  with r e spec t  t o  vi  and set  i t  equal  t o  zero .  

So the  mean square e r r o r  i s  minimum when t h e  r . v . x  i s  i d e n t i f i e d  wi th  the  

mean of the  i t h  quantum. 
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In summarizing, we have described here two methods of identifying the 

quantized variable x in the ith quantum. 

(a) Letting x = mi; ~ ~ - ~ ~ x ~ x i ,  we minimize the mean square error in 

that interval. 

(b) Letting x = yi; x cxLxi, we minimize the peak error in the ith i- 1 

interval. 

When the probability density function within an interval, pi(x) is 

uniform as shown in Figure 3 ,  then pi(x) is constant during that interval 

and the mean as given by (1) is equal to the midpoint as given by ( 3 ) .  

This implies that either type of identification of the interval ri will 

result in identical optimization. 

The special case of uniform quantization has been carried out in 

Appendix A with the following results: 

The probability density function of the error generated by replacing 

the variable in the interval (xi, xi+l) by its mean or midpoint is uniform 

with 
1 
9 

p(e)  = - for -q/2 < x < q / 2  

= 0 otherwise 

- -  
resulting in zero mean error, q/2 peak error and e2 

independently of the overall probability density function of the random 

variable x. 

= e? = q2/12 
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111. INFORMATION LOSS DUE TO QUANTIZATION 

The information conveyed by a message is the amount of new knowledge 

acquired by receiving the message. 

the message before reception, its reception would not convey any information. 

For example, if we knew the contents of 

The measure of information in the binary system could be defined as 

the minimum number of yes and no answers necessary to identify one out of 
n source symbolsJc, and the units are bits (for binary digits). Thus, the 

self-infc:rmation of a discrete signal is 

and it becomes maximum when all p(x.) are equal***, in this case: 
J 

For the continuous case, the situation is somewhat similar with p(x) being 

a uniform distribution and p(xj) substituted by P(x = X). 

latter expression is a constant for all x and approaches zero. 

of (5) for this case yields: 

Obviously, the 

Application 

*An equivalent definition is the number of bits necessary to specify any 

**Log x = log2 x unless otherwise specified. 
**Fano. (1) 

number less than or equal to n in binary form. 
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This expression goes to infinity as P(x = X) goes to zero. The result is 

very logical and it means that we need an infinite number of digits to 

represent the value of an analog variable. 

the value of the variable to a certain decimal point, a process equivalent 

to assigning the values of the variable in n ranges and specifying the range 

in which the value lies. This process is called quantization. 

The usual practice is to give 

The self information of a quantized signal is: 

ce 
(7) 

The minimum self-information occurs when P(X~-~US~X.) is constant for all j, 

and in this case: 

J 

f xi+l 

J xi 

and H(x) log n 

n is the number of quanta and is finite, resulting in a finite H(x). 

We have seen in the last paragraph how the information of a continuous 

variable is reduced by the quantization process from an infinite to a finite 

value. 

of n, a finite number; however, if we re-examine our discussion, we shall 

discover that in real life the measurement of a variable cannot possibly 

contain infinite information due to many limitations, two of the most 

The information loss seems to be infinite irrespective of the value 
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important being the accuracy of the measuring apparatus and the system* 

noise. In general, the system noise is the main factor in determining the 

number of distinguishable levels of an analog value. For example, if the 

average signal power is S and the average noise (gaussian) power is N ,  the 

number of distinguishable signal levels is 4 7  and if the zero value 

is added the number of distinguishable voltage levels becomes 

Applying equation (6), the information becomes 

log ( N) s+l bits 
H(x) 

Although this is an unconventional method of deriving the information for a 

given S/N the answer is correct. 

If the signal has a bandwidth W and a duration T, invoking the sampling 

theorem, the signal may be (theoretically) described by samples spaced 

1/2W seconds apart; thus, the number of samples in an interval T will be 

equal to 2WT. The resulting maximum information per interval T is: 

and the maximum information rate (or channel capacity) is: 

w log (S/N + 1) 

The obvious deduction from the above formula is that there is no 

signal that contains infinite information unless the noise is zero or S/N 

-he word system may refer to anything from an amplifier to a transmitter- 

**When S/N = 1 
channel-receiver configuration. 

Lx = WT the dimension of the signal space. 
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is infinite, an impossible event in physical systems; consequently, the 

loss of information due to quantization is finite and may be reduced by 

increasing the number of quanta (or levels). An increase in the number 

of levels will decrease the quantization error at the transmitter, but will 

increase the probability of error at the receiver, because the signal 

corresponding to one level (range/n)2 decreases as n increases, thus 

decreasing the received S/N.  

Referring to Figure 1, the quantization mean square error is an error 

* that occurs in the transition xto xi and is given by: 

The error at the receiver due to channel noise is an error due to the 

transition from xi to yj (ifj), and it is expressed in a statistical manner, 

because in quantized signal transmission an error will be effective only 

if it causes the signal to change level. Consequently, for N gaussian, no 

matter how small N is in comparison to R/n, the fact that N can assume 

values of -00 t o w  imposes a probability that the signal will change level. 

For quantized signals with n levels of unequal length (nonuniform) the 

error produced by going from level i to level j is eij associated with a 

*Uniform quantization is assumed. 

I\ 
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probability Pij that depends on the distance between levels i and j and 

the type of modulation. The mean square error is then: 

- 
eN = 1 e;j Pij (11) 

i 1  

Solving for 7 for the typical case of PCM (uniform quantization into 2k 
levels and binary signals), Pij becomes a constant (P) and eij varies 

uniformly over all discrete distances which are q multiplied by powers of 

two; these distances are: 

and (11) becomes 
- 

P R 22k-l 
k- 1 

3 
= E ( q 2i)2 P = 

N e 

In general, the two most significant errors, 7 q and TN are independent; 
thus the total error is given by (12) as 

where 

7 and e is given by (11). 
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- 
Although e2 is independent of p(x) for the case of uniform quantization, 

generally, for optimum quantization*, e2 

it is obvious that xN is a function of eij and P 
functions of R, n, S/N, the type of noise, the type of modulation, and the 

type of detection.** Optimum quantization will involve optimization of n 

and qi under the criterion of minimum mean square error as given by (12). 

Minimization of (12) will invariably result in an equation that could only 

be solved by numerical methods. To simplify the problem, let us examine e 

and e separately. 

_I 

4 
is a function of p(x); from (11) 

which are in turn 
i j 

N 

4 
First it should be observed that eN and e have no minimum as a function 

4 
of n all other conditions being constant. However, they are both monotonic 

functions of n, one increasing and the other decreasing. The opposing 

effects of n on eN and e q 
become equal as expressed 

suggest optimum operation when the two errors 

by equation 14. 

- -  
e 2 = e N  2 
Q 

Once n is thus chosen, eL is minimized by using optimum 
q 

with respect to the intervals qi as shown in section IV; with 

of e2 a new n is chosen and the process is repeated. With a 
- 

q 

quant iza t ion 

the new value 

small amount - 
of experience one might obtain a good estimate of e2 , which may be 20-30% 

4 
less than that due to uniform quantization, calculate n and then optimize for 

qi in only one trial. 

-his will be proven in IV. 
**For example : 

from Lawton ( 2 ) .  1 - E  
T Pij for FSK = P = 

Pij for PCM antipodal signals is an error function. 
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IV. OPTIMUM QUANTIZATION 

It has been shown in part I1 that under uniform quantization the results 

are independent of the overall probability density function of the random 

variable x. It will be shown here that the quantization error may be 

minimized if p(x) is utilized in determining the values of the quanta qi. 

The first type of optimization will be carried out under the condition 

that the quantization process maps all x in the interval (xi - 1, xi) onto the 

mean mi or x = mi f o r  X ~ - ~ < X ~ ~ .  

carried out under the condition that the quantization process maps all x in 

The second type of optimization will be 

the interval (xi-l, xi) onto the midpoint yi, and in the third type of 

optimization the approximation pi(x) = pi(x) will make mi = yi thus forcing 
- 

the above two conditions to coincide. 

1 .  Optimum Quantization with (x i-1’ Xi> 4 mi 

To obtain the optimum quantization for a given number of quanta, n, 

and under the condition of mapping the ith interval (xi - 1, x.) onto mi, we 

must minimize the average mean square error as given by ( B - 1 ) .  

1 

This is done 

in Appendix B and the results are given by ( B - 2 ) .  

mi + mi+I 
2 xi = 

if the range of x extends from a to b (B-2)  represents n-1 equations with 

xo = a and xn = b. 
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2. 

In this case, we are actually defining optimum quantization as the one 

Optimum Quantization with (Xi-1, xi) +yi 

that minimizes the average peak error. 

with the resultant n-1 equations for Xi given by (C-3) 

This is carried out in Appendix C 

or 

3 .  

If pi(X) is approximated by pi(x), a uniform distribution for each 

Optimum Quantization with pi(x) 2 p i *  

interval qi, both pi(x) and mi are functions of xi and vary in such a manner 

so that the area in a quantum is preserved. Obviously this type of approxi- 

mation will make mi = yi = and we do not know the points of 

discontinuities until the error is minimized. 

Xi + Xi-1 
2 

Since qi+l - qi may be small, the effect of the p(xi) term on the equation 

is very small. So as a preliminary estimate on xi for the solution of (D-6) 

one may solve 
qi Ai = qitl Ai+l 

t 
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DISCUSSION: 

It has been shown here that 

highest error is the most common 

the probability density function 

the type of quantization resulting in the 

one; i.e., the uniform type. The use of 

of the variable in choosing the quantizing 

levels reduces the quantization error. This error reduction increases as the , 

"non-uniformity" of the probability density function of x increases. 

Extending the above statement the error reduction becomes zero at one 

extreme when the p.d.f. of x is uniform. 

The term "non-uniformity" implies the difference in p.d.f. from one 

level to the next. Thus, an extremely non-uniform p.d.f. for a given number 

of levels may become more uniform as the number of levels is increased, thus 

decreasing the effectiveness of the methods discussed in this paper. On the 

other hand, the self information becomes maximum when each symbol or 

quantization interval is equiprobable which implies uniform distribution. 

Intuitively speaking, it seems that the l o s s  of self information due to non- 

uniformity, is compensated by the error reduction due to advantageous 

optimum quantization. 

Table I presents some results of improvement in quantization error by 

the use of optimum quantization. 

Inspection of the exact and approximate distribution method results will 

show that for all practical purposes the approximation is reasonably valid. 



- 1A - 

APPENDIX A 

UNIFORM QUANTIZATION 

This type of quantization is common because of its relative simplicity 

of implementation. If the interval is represented by the mean, the quantization 

process will result in an average mean square error as given by (A-1) 

7 E Xi(x-mi? p (x)dx (A- 1) 
xi-l 

where mi is given by (1) 

To prove this, we must first find the mean square error in each interval. 

where 

(A-3) 

and u is the unit step function; Ai, the area under p(x) in the ith interval, 

is the normalization factor for pi(x). Averaging over all intervals, one 

obtains the average mean square error 

Next, substituting (A-2) into (A-4) we obtain (A-1) QED. 

A much simpler equation for the mean square error may be obtained if 

p(x) is approximated by a constant density function in the ith interval 

given by: jxi p(x)dx 
Xi-1 i(x> = 
Xi - Xi-1 

(A-4) 

(A-5) 

* P (xtri) reads: the probability that x lies in the ith range; 
P (X Eri) = P ( ~ i - 1 ~  x xi) 
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This approximation is illustrated in Figure A-1. 

The error probability density function turns out to be uniform as shown 

in Figure A-2 and the average mean square error is q2/12 independently of the 

probability density function of x. 

. 

Referring to Figure A-1 the smooth line of 

p(x). The p.d.f. in each interval pi(x) is approximated by its average in that 

interval, 

and the new piecewise uniform function is the new approximate p.d.f., w(x). 

11 
w(x)  = TPi(.)=j-a Ai [U(X - xi-1) - U(X - xi)] (A-7) 

i i 

. This approximation brings the mean and the midpoint of each interval t o  the 

same point 

So far we have taken a range of values of x (the infinite number of 

points between xi and xi-l) and have identified them by their mean or midpoint 

mi or yi respectively. The error due to this quantization is: 

e = x-yi or x = e + yi (A- 8) 

For yi and e independent: 

* Mx = Myi Me (A-9) 

* M is the moment generating function of the random variable. 
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Since the moment generating function is the Fourier transform of the p.d.f. 

(A-9) may be rewritten as: 

(A-10) 

Equation (A-9) implies that 

P(X) = P(Yi> @ ~(e) (1) (A- 11) 

If p(x) is approximated by w(x), the piecewise uniform curve, (A-11) may be 

rewritten as: 

W(X) P(Yi) Q) ~(e) (A- 12) 

At this point, it should be noticed that p(yi) is a train of delta functions 

centered at x = yi and of area Ai. 

delta functions p(yi) is to give the function w(x) of Figure A-1, it is clear 

If the convolution of p(e) and a train of 

that p(e) must be a rectangular pulse function as shown in Figure A-2. 

Normalization of p(e) results in K = l/q, The mean is equal to the 

midpoint (uniform distribution) which is obviously zero. So the mean error 

is zero from 
P 412 

and the mean square error per interval is: 

- 
ei - - 5 e2 $ de = q2/12 

i 

Averaging this error over all the intervals 
n 

(A- 13) 

(A-14) 

- 

(1) is the symbol indicating convolution. 
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APPENDIX B 

OPTIMUM QUANTIZATION WITH (xi-1, xi) 3 mi 

Although calculus of variations could be used to minimize the error, 

the procedure to be followed here will be a simple one of taking the partial 

derivative of the error with respect to each variable xi at a time, holding 

the remaining variables constant. For n quanta there are n-1 variables 

and the above process will yield n-1 equations with n-1 unknowns, when the 

partial derivatives are set equal to zero. 

If the range of x extends from a to b and the number of quanta is n, 

the expression for the average mean square error is: 

- X1 
e2 = (x-m1)2 p(x)dx + (x-m~)~p(x)dx + - - - - - - 

2 
P W d X  2 

(x-mi) p(x)dx + - - - - - - 
Xi- 1 

Differentiating with respect to xi 

2 
(x-mi) p (x) dx + (x-mi+l) p (x) dxSO+O--$O I” 3 qe2> 

b xi 
= 0 + 0 +.. .*e+- 

Xi-1 

Setting the above equation equal to zero for all i 

2 (xi - mi) = (xi - mi+1l2 if p(xi) o 

The above equation yields 

mi + mi+l 
2 xi = 
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APPENDIX C 

OPTIMUM QUANTIZATION WITH (~i-1, xi) -$ yi 

For the conditions imposed here we must minimize the average peak error. 

The peak error e is P 
e =  Xi - X * -  L = 9i/2 
P 2 

and the average peak error is 

By differentiating (C-2) with respect to xi and by setting equal to zero we 

obtain the condition of optimum quantization for peak error which is 

given by C-3. 

Equation (C-3) represents n-1 equations. 



- 1D - 

APPENDIX D 

OPTIMUM QUANTIZATION USING THE APPROXIMATE pdf 

The approximation given by pi(x) =.wj fr will change the dotted line 

pdf of Figure B-1 to the solid line pdf. In addition, the mean mi equals the 

midpoint yi which is equal to one-half of the sum of the limit points of the 

interval 

The method of optimization will be similar t o  the one employed in 

Appendix B with differentials replaced by differences because of the nature 

of pi(x). The error is given by: 
r 

f xi+l rxn 

)Xi 

If xi is allowed to vary by a small amount b x  while the rest of the limits 

are kept constant, the new ms error 
-1 
e2 is given by (D-1) with the following 

changes in the ith and i + 1st integrals. The limit xi is replaced by 

xi + AX, 

- 
The variation of the ms error is given by the difference of 2' and e2 

* See (A-5) and (A-6) for definition. 



2 
(X-mi+l) p i + p  dx I 2 -  

(x-mi) pi(x) dx - - I  
Using the  f a c t  t h a t  a l l  pd f ' s  i n  (D-2) a r e  uniform and m i s  ha l f  of the sum 

of the  l i m i t s ,  i.e., 
X i  + X-+I X i - 1  + X i  + A X  - - 

3 mi+l 2 
y ----- - 

mi - 2 

(D-2) may be r e w r i t t e n  as*: 

- P i + l  (x) (x i+ l  - x i )  

To s impl i fy  (D-3) l e t  us r e f e r  t o  F igure  D-2 and cons ider  t he  i n t e g r a l  t h a t  

r ep resen t s  the  a r e a  under p(x)  i n  t h e  i n t e r v a l s  ad jo in ing  xi + Lx 

xi+d x J (p(x)dx = f i ( x ) d x  + dx 

xi-l xi-l 

s i m i l a r l y  

(D- 3 1 

(D-4) 



- 3D - 

S u b s t i t u t i n g  (D-4) and (D-5)  i n t o  (D-3) and expanding 

and : 

s e t t i n g  t h e  d e r i v a t i v e  equal  t o  zero and r ep lac ing  x j  - xj- l  by qj 

we o b t a i n  t h e  r e l a t i o n  f o r  optimum quan t i za t ion  

Repeating t h i s  f o r  a l l  i i s  equiva len t  t o  cons ider ing  (D-6) a s  n-1 equat ions .  

These n -1  equat ions  toge the r  with 

n 

i=l 

form t h e  n equat ions  with n unknowns. 
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GLOSSARY 

X 

xi 

Y i  

i m 

r i  

R 

n 

q i  

A continuous random v a r i a b l e  (r .v.) 

The l i m i t s  of t h e  quan t i z ing  i n t e r v a l s .  

The midpoint of the  i t h  i n t e r v a l  - X i  + X i - 1  
( y i  - 7) 

The mean of t h e  i t h  i n t e r v a l  ( m i  = r i x  p ( X ) d x / l I t  (x) dx ) 

xi-l 

The i t h  range of x ( X ~ - ~ ( X < X ~ )  

The range of x ( a l so  the va lue  of t h e  range = xn - XO 1 

The number of q u a n t i z a t i o n  l eve l s .  

The va lue  of the  i t h  quan t i za t ion  i n t e r v a l  (qi = xi - xi-l) 

p(x) The p r o b a b i l i t y  dens i ty  func t ion  (pdf) of x 

p .  (x) The normalized pdf of x i n  t h e  i t h  i n t e r v a l  (pi(x) = p(x) ; xi- l  (x  <xi )  
1 A i  

P ( x i )  = p(x 'Xi )  

p(yi) The p r o b a b i l i t y  t h a t  x i s  represented  by yi an impulse func t ion  loca ted  

a t  x = y i  w i th  weight A i  = P . ( X ~ - ~ ( X ( X ~ )  = P ( x € r i )  

'pi(x> = t h e  mean pdf i n  the  i t h  i n t e r v a l  pi(x) = ( r i p ( x ) d ?  /(xi - 'xi-1) 
xi-l 

S The average s i g n a l  power 

N 

W The s i g n a l  bandwidth 

The average thermal no i se  power 
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Quantization of a continuous function and the 
error with ( b j  midpoint representation and 
(c) unbiased representation. 

Figure 2 
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The pdf of the uniform quantization error. 

Figure A-2 
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Exact (dotted l ine)  and. approximate pdf 

Figure D - 1  

Figure D-2 
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